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Introduction
▶ Explosion of methods in observational causal inference methods in the last

decade that aim to weaken identification assumptions, relax functional form
assumptions, and estimate new quantities
▶ Double Machine Learning (Chernozhukov, Chetverikov, et al. 2018) is now well

known and hinges on selection on observables: the treatment is as good as
randomly assigned conditional on observed covariates

▶ With repeated measurements, we can relax this and allow for selection on
unobservables using Difference-in-Differences, or Synthetic Control (and
friends)

▶ This Paper: Express popular research designs in a shared augmented
balancing form, extensive simulation studies to guide empirical practice,
software abal

▶ Complementary practitioner’s guide to common framework for combining
flexible models for causal problems : Ben-Michael, Feller, and Rothstein
(2021), Shen et al. (2022), and Bruns-Smith et al. (2023)
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The Estimand
▶ (Yi,Wi,Xi)

N
i=1 ∈ R× {0, 1} × X ⊆ Rd. Corresponding covariate

distributions for treatment T and control C.
▶ ATE (E

[
Y (1) − Y (0)

]
) and ATT (E

[
Y (1) − Y (0) | W = 1

]
) are both

substantively meaningful estimands, and require related but distinct
identification assumptions

▶ ATE requires positive treatment probability for all units. In many observational
settings where units self-select into treatment, this is simply not credible.

▶ ATT is a compromise: condition on realised treatment assignment T , and
construct potential outcome in the absence of treatment for treated units.

▶ Sample mean of treatment outcomes is consistent for E
[
Y (1) | W = 1

]
▶ Need to construct estimator for E

[
Y (0) | W = 1

]
≡ ÊT [Y

(0)] =: ξ̂

▶ Analogous ‘canonicalization’ problem: generalise from A/B test to a target
distribution: Estimate E

[
Y (w) | S = 0

]
(bridgerton)
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Propensity Scores vs Balancing Weights
▶ One way to compute ξ̂ is through

reweighting ÊC
(
dT
dC (X)Y

)
▶ Density ratio dT

dC (X) is challenging to
estimate using plug-in estimation

▶ Standard practice: fit model
π(X) = E [W = 1 | X], plug in to construct
inverse-pscore weight π(X)

1−π(X)

▶ This inversion step can inflate errors
▶ Alternative: directly estimate weights to

minimize covariate imbalance
▶ ‘Automatic’ estimation of the Riesz

Representer (Hirshberg and Wager 2021;
Chernozhukov, Newey, and Singh 2022)

min
γ

Balance︷ ︸︸ ︷
hζ(X1 −X′

0γ)+
∑
i∈C

Dispersion︷ ︸︸ ︷
f(γi)

s.t.
∑
i∈C

γi = 1

For convex f(·), dual is easy to solve as
regularized propensity score

min
α,β

∑
i∈C

f∗(α+ β′Xi·)− (α+ β′X1) + h∗
ζ(β)

γ̂∗ = f∗′(α̂+ β̂′Xi)

rsw implementation with ADMM
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Cross Sectional: Identification and Estimation

Identification Assumptions
▶ SUTVA:

Yi = WiY
(1) + (1−Wi)Y

(0)

▶ Unconfoundedness: Y (0) ⊥⊥ W |Xi

▶ Overlap: Pr (W = 1|X) < 1

Share of treated observations
ρ̂ := Pr (W = 1)

Estimators

▶ Outcome Modelling
ξ̂OM := 1

nt

∑
i∈T µ̂(0)(Xi)

▶ Reweighting ξ̂wt =
∑

i∈C γiYi

▶ Augmented Balancing

ξ̂AUGBAL =
1

ρ̂

∑
i∈T

µ̂(0)(Xi)︸ ︷︷ ︸
Reg

+

1

ρ̂

1

n

∑
i∈C

γi

{
Yi − µ̂(0)(Xi)

}
︸ ︷︷ ︸

Reweighted Residuals
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Formal Properties: The role of augmentation
Following Ben-Michael, Feller, Hirshberg, et al. (2021), we can decompose errors

ξ̂WT − ξ =

Bias from Imbalance︷ ︸︸ ︷
1

n

∑
i

(1−Wi)γ̂iµ
(0)(xi)−

1

n

∑
i

Wiµ
(0)(xi)−

Noise︷ ︸︸ ︷
1

n

n∑
i=1

(1−Wi)γ̂iεi +

Sampling︷ ︸︸ ︷
1

n

n∑
i=1

Wiµ
(0)(xi)− ξ

ξ̂AUGBAL − ξ =
1

n

∑
i

Wi µ̃(0)(xi)︸ ︷︷ ︸
=: µ̂(0) − µ(0)

−
1

n

n∑
i=1

(1−Wi)γ̂iµ̃
(0)(xi)

︸ ︷︷ ︸
Bias from Imbalance

+
1

n

n∑
i=1

(1−Wi)γ̂iεi︸ ︷︷ ︸
Noise

+
1

n

n∑
i=1

Wiµ
(0)(xi)− ξ︸ ︷︷ ︸

Sampling

If our outcome model isn’t totally useless, regression error will be easier to balance than
the unknown regression. µ̂(0) and γ̂i play complementary roles: regression could soak up strong
signals and weights pick up higher order ones.
Bruns-Smith et al. (2023) show that augmented balancing with linear weights collapses to a single
ridge regression. One possible implication: Balancing score and outcome model should be in
different bases.
Consistent and Asymptotically Normal, Semiparametrically efficient, admits to standard variance
formula (Ben-Michael, Feller, Hirshberg, et al. 2021)[Appdx A]
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Difference in Differences: Identification

▶ Unconfoundedness is often not credible. We want to allow for level
differences in Y (0) across treatment and control due to unobserved factors

▶ Two periods, (Yi1, Yi0,Wi,Xi)
N
i=1 . TreatmentW applies in second period

▶ Estimator ξ̂ := Ê
[
Y

(0)
i1 | W = 1

]

▶ Identification Assumptions
1. No anticipation E [Yi0 | Wi = 1] = E

[
Y

(0)
i0 | Wi = 0

]
2. Conditional Parallel Trends

E
[
Y

(0)
i1 − Y

(0)
i0 | W = 1,X

]
= E

[
Y

(0)
i1 − Y

(0)
i0 | W = 0,X

]
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Difference in Differences: Estimation
▶ Outcome Modelling

ξ̂DID =
1

|T |
∑
i∈T

Yi0︸ ︷︷ ︸
Baseline outcome for treated

+
1

|C|
∑
i∈C

 =:∆i︷ ︸︸ ︷
Yi1 − Y0i


︸ ︷︷ ︸

Trend for control

▶ Reweighting (Abadie (2005) proposes IPW with γi = π(Xi)/(1− π(Xi))

ξ̂wt =
1

|T |
∑
i∈T

Yi0 +
1

|C|
∑
i∈C

γi(Yi1 − Yi0)

▶ Augmented Balancing (with µ̂0(Xi) = E [∆i | Xi = xi,Wi = 0])

ξ̂AUGBAL DID =
1

|T |
∑
i∈T

Yi0 − µ̂0(Xi) +
1

|C|
∑
i∈C

γi
(
∆i − µ̂0(Xi)

)
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 =:∆i︷ ︸︸ ︷
Yi1 − Y0i
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Trend for control

▶ Reweighting (Abadie (2005) proposes IPW with γi = π(Xi)/(1− π(Xi))
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1
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γi(Yi1 − Yi0)
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Panel Data: Identification
▶ Data: (Yit,Wit)

N
i=1, t ∈ [T ]. Absorbing treatment, one-shot adoption byN1

units at time T0 + 1

▶ Commonly used under analogous assumptions to 2-period DID
▶ ‘Long’ Parallel Trends

E
[
Y

(0)
it − Y

(0)
it′ |Wi = 1

]
= E

[
Y

(0)
it − Y

(0)
it′ |Wi = 0

]
∀ t ̸= t’

▶ Frequently paired with corresponding representation for untreated PO
Y

(0)
it = αi + γt + εit (Liu, Wang, and Xu 2021; Borusyak, Jaravel, and Spiess

2022)

▶ Alternate identification assumptions
1. Latent Factor Model: Y (0)

it =
∑J

j=1 ϕijµjt + εit with unknown time-varying
factorsµt = {µjt} ∈ RT , j = 1, . . . , J and unknown unit loadingsϕi ∈ RJ

(Abadie, Diamond, and Hainmueller 2010; Xu 2017)
2. Unconfoundedness given history: Y (0)

it ⊥⊥ Wi|Yi,1:T0 ∀t > T0 (Ben-Michael,
Feller, and Rothstein 2021)
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Panel Data: Estimation inference



Y1,1 Y1,2 . . . Y1,T0 Y1,T
Y2,1 Y2,2 . . . Y2,T0 Y2,T
...

...
YN0,1 YN0,2 . . . YN0,T0 YN0,T

... ?
YN,1 YN,2 . . . YN,T0 ?


=:

(
X0 yn

X1 ?

)
(Athey et al. 2021) formalism:
SC fitX1 ∼ X0 (Vertical Regression)
Autoregressive models fit yn ∼ X0

(Horizontal Regression)
Some outcome models (DFM, MC) fit both.

Outcome Modelling : ξ̂HR = µ̂0(X1)
Balancing

ξ̂VR = ⟨γ̂,yn⟩ where

γ̂ = argmin
γ∈∆|C|−1

h(γ) s.t.
〈
γ,X0

〉
≈ X

1
+ µ

Augmented Balancing

ξ̂AugBal = µ̂0(X,yn)

+
∑

i∈C,t>T0

γ̂i(Yit − µ̂(X,yn))

SDID: simplex regression for both
Augsynth: ridge regression for both
Alternative: Matrix Completion + Entropy
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Inference

▶ For cross-sectional and two-period estimators, we have a conventional score
function that can be used to construct confidence intervals
▶ With flexible nuisance models, cross-fitting required for valid inference
▶ With a restricted class of models (Donsker or ‘simple-enough’ (leave-out

stability (Chen, Syrgkanis, and Austern 2022)), can use full data
▶ For panel data, analogous techniques aren’t available. Bootstrap or Jackknife

shown to work well (Arkhangelsky et al. 2020)
▶ With single treated unit, inference procedure is non-standard: use permutation

tests or conformal methods
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Overview

Introduction

Framework
Propensity Scores vs Balancing Weights
Cross-section
Two-periods
Panel Data

Optional: Simulation Studies
Cross-section
Two-periods
Panel Data
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Cross-sectional Simulation: Good overlap

True effect of 0.
Extension of Froelich(2007), Hainmueller (2012)
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Cross-sectional Simulation: Poor overlap
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Cross-Sectional : ACIC 2016 DGP

ACIC (2016) DGPs (Dorie et al. 2019):
4802 observations and 58 covariates.
100 replications of 77 simulation settings that
vary

▶ Treatment model∈ { Linear, polynomial, step }

▶ Response model∈ { Linear, exponential, step }

▶ Treatment/Response Alignment∈ {None, Low, High }

▶ Heterogeneity∈ { None, Low, High }

▶ Overlap∈ { Full, Penalty }

▶ Treated %

Bias RMSE
OLS 0.6146 0.7435
IPW 0.6302 2.3247
AIPW 0.1516 0.2070
EB1 0.4951 0.6461
EB2 0.2578 0.3689
HBAL 3.2490 3.8954
balHD 0.4585 0.5904
AugBalE 0.2001 0.3344

Previously, both L2 and ebal only succesfully
computed≈ 60% (Cousineau et al (2022)).
ebal performance in high dimensions
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DiD simulation setup

▶ p-vectorXi ∼ N (0,Σ) whereΣ follows Toeplitz form with
entries 0.50:(p−1) (correlated covariates)

▶ Wi ∼ Bern (Λ(X′
iγ)), γ sparse U [−1, 1]

▶ Baseline outcomes Y(w)i(0) generatedX′
iβ

(w) + εi with β(w)

sparse
▶ Trend Y0i(1)− Y0i(0) generatedX′

iβ
∆ + εi (where β∆ = 0

for PT)
▶ Estimand: ATT in the 2nd period

Untreated
Treated
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Panel Simulation Setup

▶ N units, T periods
▶ Single unknown factor: µi ∼ N (i/N − 0.5, 0.5)

▶ Treatment: Wi ∼ Bern (Λ(µi))

▶ Outcome:
▶ parallel trends: Yit = µi + 0.1t+ εi, εi ∼ N (0, σ)
▶ time trends: Yit = µiαtt+ εi, εi ∼ N (0, σ), αt ∼ U [l, u]
▶ Later: ARIMA with dynamics in both Yit, εit

▶ Estimand: ATT in the last period (true effect is 0)

Control
Treated
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The choice of loss function for Panel Balancing

min
γ∈∆

Balance︷ ︸︸ ︷
hζ(X1 −X′

0γ)+
∑
i∈C

Dispersion︷ ︸︸ ︷
f(γi)

hζ(·) fixed to L2

Penalty for dispersion f(·)
consequential

▶ SC has no penalisation

▶ SDID has theoretically motivated
penalisation

▶ EB penalises deviation from uniform
weights: interpolates between DiD and
balancing

DGP with factor structure,
N = 500, T = 10; perfect fit
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Conclusion
▶ Flexible models can be judiciously used with reweighting methods to improve the robustness

of our estimates to misspecification

▶ Increasing consensus on adopting a hybrid structure of combining a performant outcome
model with weights that explicitly target sample balance

▶ No feedback is a very strong assumption in panel settings (reversals are common)
▶ Double robustness is heuristic in this setting, since assignment mechanism isn’t

directly modelled
▶ Progress: Arkhangelsky and Imbens(2022, 2023), Arkhangelsky et al (2023)

▶ We propose a common framework for these ‘augmented balancing’ estimators in three
popular designs and perform extensive simulation studies to show that they weakly
outperform standard estimators (including AIPW), and provide heuristic understanding of
when gains are likely to be particularly large

▶ Forthcoming R package abal that uses analogously modular construction to pair flexible
outcome models with a fast and numerically stable estimation procedure for balancing
weights
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